
Nicholas Cutler

Anyone following RISC OS shows recently
may have been intrigued by the talks about

UCDebug, an entirely new development from
an equally unexpected source, the University

of Cantabria in Spain. This application was
introduced by Bernard Boase in Archive 24:6.

Having had an opportunity to try this software
out for myself, this article will therefore

attempt to show what UCDebug can do.

Firstly, UCDebug is a debugger, a tool used
by programmers to help find errors (bugs) in

their programs. Typically, a debugger will
allow you to run a program in a controlled

environment, to stop execution at arbitary
points, and to examine data in variables and

memory. To facilitate this, processor
architectures often have a special breakpoint

instruction, and extra registers allowing the
debugger to maintain its own state entirely

separate from that of the faulty program being
executed. Some degree of memory protection

is also necessary to prevent a faulty program
from affecting other tasks, or the operating

system itself.

Debuggers naturally fall into two types,
machine level and source level. UCdebug falls

into the first category as it allows you to step
through a program by individual assembly

language instructions, and to examine the
contents of the processor’s registers. Source

level debuggers have additional symbolic
capabilities allowing you to work more

naturally with programs in a high-level
language. The obvious example of the latter

being DDT, the debugger included with the
Desktop Development Environment, the

programming tools sold by RISC OS Open.

It is also fair to say that UCDebug was
designed to be an educational tool to help

students gain some experience with assembly

language programming. The low memory
requirements and relative simplicity of RISC

OS, plus the availability of economical
hardware in the form of the Raspberry Pi,

makes it ideal for this task. It does, however,
mean that UCDebug has a few limitations

which will make it less useful to software
developers. For this reason, I have conceived

this article not as a software review, but rather
as an introduction to debuggers and their

capabilities. I also encountered some
difficulties in using UCDebug, and more

especially in preparing programs for
debugging, so my other purpose here is to

communicate what I learnt about that process.

Before considering using UCDebug, you
should be aware that it is very limited in the

range of hardware that it supports. Initial
attempts with the Pandaboard which I now use

as my main machine failed: the debugger
would load, but crashed as soon as I tried to

execute the program. Similar behaviour was
observed on a Raspberry Pi 4, although it did

work on the older Pi 3B+.

To sensibly use a debugger, you will first need
to prepare a program for debugging. This is

where another limitation of UCDebug
becomes apparent: it is a machine level

debugger, and consequently your program will
need to have been written entirely in assembly

language. This is also likely to considerably
restrict the use of UCDebug as most assembly

language programmers will have access to
alternative tools. Although I did try some

simple programs in the C programming
language in the hope of working with the

machine code output by the compiler, I was
unable to obtain an executable program which

the debugger could accept. Consequently
some familiarity with assembly language will

be beneficial to follow this article.

Another limitation is that it will only work

1 Archive 25:4

UCDebug in action

with programs in the Linux-like ELF format,
rather than the native format. This will mean

that you will need to use the GNU assember
as, and the linker ld to prepare programs.

Those, like me, who may be more used to the
objasm assembler can still write programs in

that format and assemble them with the
alternative asasm assembler. If you prefer, I

have included a Perl script to convert
assember files to the GNU format. This can be

invoked using a command like:

perl convasm/pl s.asmfile >
s.gnusource

The very old version of Perl included with the

RISC OS Open development tools is quite
adequate for this task.

If you do prepare a source file in the GNU

format, it is worth remembering that as
doesn’t understand the ENTRY directive;

instead the entry point of your program should
be the label _start, which should also be

defined as a global symbol.

 .global _start

_start:

 @ your code follows ...

Another difference to be aware of is that as

will not accept the ADR pseudo-instruction to
generate an address in a register when it refers

to a different area. If you need to use a region
of memory for data storage then you will have

to do something like:

 .data

mydata:

 @ literal data ...

 .text

 LDR r0,datalabel

datalabel:

 .word mydata

Once an assembly language file has been
prepared using either method, it will need to

be assembled using a command like:

as -mapcs-32 -mcpu=cortex-a53
gnusource.s -o gnusource.o

The cpu parameter can be changed to suit the
machine you are using. If your program uses

any floating point instructions then
additionally include the option -mfpu=vfpv2

on the command line. Because UCdebug only
works at the machine level, it is not necessary

to include debugging information with the
program, and the -g option can be omitted.

Finally, the program must be ‘linked’ to create

a finished executable version. Even when
there is only one source file, the linking stage

is necessary to update any absolute addresses.
Another restriction of UCDebug is that it

requires programs to start at the address of
&18088, instead of the more usual &8000. To

achieve this, link your program with a
command like:

ld -Ttext=18088 o.gnusource -o
progname

Having prepared a program, it is now possible
to load it into the debugger. To begin with it is

easiest to use the ready prepared program
buggy for this purpose. This deliberately

faulty program uses the sieve method to find
all the prime numbers less than 1024. The

remainder of this article will use UCDebug to
find the errors in this program, but curious

readers will find the source of the corrected
program in s.sieve.

Firstly, load the debugger by double clicking

on it in the usual way. Please note that
UCDebug was itself built with gcc, and will

need the !Sharedlibs directory to be installed.
Also, before running it for the first time, you

may need set the filetype of the !Runimage
file to &E1F, and remove the suffix from the

name.

Once started, UCDebug will place an icon on
the iconbar, and open four windows, namely:

a console where you can interact with the
debugger, a disassembly of your program, the

2 Archive 25:4

contents of the processor’s registers, and the
data in memory. We will start with the first of

these windows:

This is where you can enter commands to
control the debugger, and where you will see

messages confirming the result. To begin with
locate the example program “buggy”, and load

it into the debugger with the command ld
buggy. If all goes well, confirmation will be
given as in the illustration below:

Having loaded your program, UCDebug does

not run it immediately, but rather stops at the
first instruction (highlighted in green

in the disassembly window). For a
full description of this example

program refer to the comments in the
source file. However, the first loop

scans for the next number in the list
which has not been marked. This

will be the next smallest prime
number, and the loop will finish with

this stored in R2. So set a breakpoint
at &180AC with the command br

180AC. As confirmation that this has
worked the relevant instruction in

the disassembly will be highlighed in
red. It is also possible to set breakpoints by

clicking the middle button of the mouse over
the desired location. However, I found that the

mouse pointer freezes once the debugger has

started running your program. If you find this
to be the case, then you will need to resort

entirely to typed commands.

Having set the breakpoint, type go, and the
debugger will now run your program as far as

that point. Look in the window showing the
contents of the registers and check the value in

R2. This now shows the value 1 (highlighted
in red because the register value has been

changed by the program). In fact we were
expecing it to be set to the first prime

number, namely 2. The solution to this is
either to start with number 1 already

marked, or to start the loop counter from
1 rather than 0. However, it is not

necessary to correct this immediately, as
the debugger instead allows us to change the

value in the register and continue with the
next part of the program. To do this

use the command reg R2=2 to
change the contents of R2. When

changing the contents of registers or
memory, you can enter values in

decimal, or in hex by prefixing them
with 0x. However, all memory

addresses are assumed to be in hex,
so that the prefix is not necessary

when specifying locations for
breakpoints.

The next stage of the program

proceeds to mark all those numbers
which are multiples of the specified

prime. To do this, the program takes a copy of
the value of R2 and repeatedly adds this to

generate all multiples. Using a single bit to
mark a number as composite, a pattern is

built up in memory and R6. To check this
next part of the program set a breakpoint

at &180C8 (using br 180C8), just after
R6 is saved to memory. Now type go a

few times and watch the pattern build up
in memory and in R6. After a few

iterations the value of R6 is &150,
representing the pattern 1 0101 0000 in

3 Archive 25:4

binary. The program is correctly building up
the expected pattern of alternate bits

representing all the multiples of two, but it
started with the fifth bit, not the fourth. This is

because the program has been counting up
from one, whereas the computer counts from

zero.

To correct this we can use the debugger to
alter the values in memory and R2. Issue the

command set 1815C=0xA8 to change
memory, and reg R2=7 to update the register.

Having changed this, there are hopefully no

more errors within this loop, so we now want
to allow this part of the program to complete

without stopping on each iteration. To do this
we clear the second breakpoint at &180C8

with the command br 180C8 (note that the br
command simply toggles a breakpoint

between on and off). Then set a further
breakpoint after the loop, on the instruction

add r2,r3,#1, with the command br 180D4.
Now start the program running again by

typing go. The loop should then complete and
all multiples of two should have been marked

in memory. We can use the memory window
to check this, and

locations from
&1815C should show

a pattern of A’s in the
hexadecimal display.

At this point we can

be reasonably
confident that there

are no further errors
in the second loop, sieve_n. Continuing the

execution of the program again, it will jump
back to the beginning to find the next prime

number. The debugger will, once again, stop
at our first breakpoint at &180AC, where we

can see that the value of R2 is, once again
incorrect having missed out the prime number

3. Change this register to the correct value
with reg R2=3.

The next step will be to confirm the error in
the sieve_n loop, so we will use the debugger

to execute just one machine instruction at a
time. Type the command tr a couple of times,

so that the debugger reaches the first line of
the loop, at the statement and r4,r2,#31.

Having been copied into R3, the value of R2
should itself have been be reduced by one.

The simplest way to do this is to insert an
extra instruction sub r2,r2,#1 immediately

after the move statement, although a more
satisfactory solution is to increment R2

conditionally in the findprime loop. For now,
we will use the debugger to change R2 so that

it is ready for the first iteration of the loop
with the command reg R2=5 (the first

multiple of 3, minus 1 because the computer
counts from zero). Check in the register

display window that this has taken effect, but
that R3 is still equal to 3. Now, start the

programming running again and allow the
second loop to finish with the debugger

stopped at &180D4. In the memory window
we should notice that the pattern in memory

has changed now that all multiples of 3 have
been marked:

At this point the program will again jump

back to the beginning to find the next prime
number, 5. Rather than letting this happen, we

will single step for a few instructions and
watch the value in R2. Issuing the tr

command a few times, or alternatively gt
18094 to execute up until the start of the
findprime loop will let us see what happens.
The value of R2 should be updated before

returning to the first loop so that the next

4 Archive 25:4

number in sequence is checked. Looking at
the dissassembly of the program, and the

register display, notice that R2 is set to R3
plus 1. If we were counting from 1 then this

would be fine. However, because the
computer counts from zero (we have already

had to modify R2 to take this into account),
the addition is not necessary. Instead all that is

needed is to restore R2 to its starting value.
The necessary change is to replace the add

instruction with mov r2,r3.

If you have been following this article on your
computer, you will have located the first three

bugs in the faulty program. At this point it
would be a good idea to close UCDebug, and

make the necessary corrections to the source
file. Edit the file s.buggy in your favourite text

editor, using the correct version s.sieve as a
guide to avoid introducing any further errors.

With these corrections made to the program, if

you try running it you will discover that there
is a further error in the output routine. So,

once again, follow the instructions above to
prepare the file for debugging, start UCDebug

and load the program.

This time we are confident that any further
errors are in the final loop which prints out the

prime numbers. Scroll the code window with
the mouse, or type code 180C8 so the the

relevant part of the program is visible. We will
now start by setting a breakpoint at

printprime (using br 180E4), on the
instruction mov r2,#0. Start the program, so

that it runs up until this point. Checking the
display in the memory window will confirm

that all of the composite numbers have been
marked, and only the primes are clear. You

can check this yourself by writing out the bit
pattern of the first word. The only bits which

remain clear (equal to zero) are those
representing prime numbers.

The output routine begins with a short loop

which scans the list for the unmarked

numbers. When it finds a clear bit, the loop
finishes with the value in R2. The next section

then sets up registers and calls SWI &D6
(OS_ConvertCardinal2) to convert the number

to a string for display. The next instruction
calls SWI &02 (OS_Write0) to write this

string on the output. It is worth going forwards
to this point to verify that the expected string

has been placed in memory. To save setting a
breakpoint, use the command gt 18120. If

you step forward by one instruction from here
this string will be written to the output, and

the debugger will open another window
showing this:

The next few instructions output a carriage-
return and line-feed before restoring registers

and looping back to identify the next prime
number. Go back to this point with the

command gt 180E8 and check the register
display. Notice that although R2 looks correct,

R1 still contains the address of the output
buffer, which will cause problems later.

Change it back to 1 with reg R1=1. Now run
the program up until the instruction mov

r3,r0 at &18108. The value in R2 shows that
the program has correctly identified the

second prime number. Failing to restore the
value of R1 after the output routine would

have prevented it from finding and printing
the remaining primes. To correct this we can

insert an instruction mov r1,#1 just before the
final unconditional branch.

This completes the debugging session, so you

can now edit the file s.buggy once more to
include this additional instruction. If you now

assemble this source file and link it, you

5 Archive 25:4

should have a working program.

For those who wish to experiment further, an
additional example in assembly language has

been supplied with this article. The program
s.factor attempts to solve the opposite problem

and find the factors of a composite number.
Although there are no deliberate mistakes in

this code, you can nevertheless use the
debugger to see how it works. It also uses a

few VFP instructions to find the square root of
a number. The ability to use VFP instructions

and registers is one area where UCDebug
currently goes further than DDT. If you try

this, remember to open the VFP registers
window from the iconbar menu of UCDebug

first.

This article has introduced the concept of

debugging tools, and used UCDebug to show
the capabilities of a simple machine-level

debugger. Following the worked example of
finding the errors in the Sieve program has

demonstrated how useful such tools can be,
especially when working in assembly

language. It is arguably fair to say that
UCDebug fulfils its intended role as a

teaching aid well, but as a practical tool for
developers it has significant limitations.

Anyone programming in assembly language
on a regular basis will probably have access to

better tools. Similarly, the inability to work
with output from high-level languages and the

native AIF format binaries will significantly
limit its use among those developing software

for RISC OS. However, the occasional
programmer may benefit from an accessible

introduction to debugging tools, and assembly
language programming.

Nicholas Cutler ncc25@srcf.net

6 Archive 25:4

