
Nicholas Cutler

The second article in my Secret Life of

Algorithms series (Archive 22:9) looked at

the problem of finding a word within a

string of text, rather like the search-and-

replace function in a wordprocessor.

What’s called “regular expressions”

extends this idea into a general tool for

processing text. Regular expressions are

commonly supported by the more

advanced text-editors aimed at

programmers, as well as by standalone

utilities and some newer programming

languages.

Some baby steps

To begin with, suppose you are trying to

find every occurrence of the word walk in a

document and replace it with run. This is a

simple enough task, but if you’re not

careful a naive search would also find

references to walkers crisps! You can

attempt to solve this problem by searching

for every occurrence of walk followed by a

space, but regular expressions allow us to

be more specific and consider some of the

other characters – such as newline or tab

or close-bracket or close-quote or emdash

or comma or fullstop – that may mark the

end of a word.

To give a more realistic example, I was

once faced with the task of taking

formatted text from Interword, a BBC

Micro wordprocessor, and importing it

into !Ovation on the Archimedes. Using a

text-editor that supported regular

expressions enabled me to solve the

problem without writing a program.

Like wildcards

Many readers may already have some

experience of simple regular expressions,

as the idea is commonly used for

specifying patterns in text. Filecore allows

the use of certain “wildcards” when

specifying filenames to commands like

copy and count. An asterisk means any

sequence of characters, so count */jpg

will count the total size of all files with the

suffix “/jpg”. If they were files on a Dos-

type filing system this would simply mean

all Jpeg images. Similarly, a hash stands for

any one character, so count code/#

would match all files called “code” that

have a single-letter suffix, usually things

like C or assembler source code (again if

you are following Dos conventions). Once

again, regular expressions let us specify

much more complex patterns if necessary.

StrongEd example

The idea of regular

expressions is still more

common on Linux than

on RISC OS, but we do

have a number of tools

that support them. The

search option with

wildcards in !Edit is an

example; other text-

editors like !StrongEd

go further.

Regular expressions Part 1 of 2

41 � Archive 23:10 � February–March 2015archivemag.co.uk Archive 23:10 � February–March 2015 � 41

archivemag.co.uk

To give you an idea of what’s possible,

start by loading a Basic program into

!StrongEd. Press F2 to get the “list of

found” dialogue, ensure that you’ve

selected the advanced option and enter the

following into the search:
“DEF”{” “}(“PROC”|”FN”){AD}+

[Note the distinction between ordinary and

curly brackets. —Ed.] This specifies a

pattern that searches the text of the

program for all function or procedure

definitions. If you now run this search,

another window will open listing all such

lines in your program. You should see

something like the first screenshot.

A general module, from Perl

This is a useful enough feature in its own

right, but part of the power of regular

expressions comes from the ability to use

them in your own programs to automate

text-processing tasks. For this

purpose, the Regex module can

be used from most programming

languages, while languages such

as Perl offer them as a core

feature of the language. The exact

set of regular expression features

offered by these tools varies, as

does the syntax, but once you’ve

learnt one, you’ll find the idea is

similar for others.

Throughout this article I will

focus on the regular expressions

used by Perl, principally for the range of

facilities which they offer, but also because

it is the one with which I am most familiar.

Perl is commonly used on Linux for

automating a lot of text-processing tasks,

and there is also a RISC OS port.

More conveniently there is also the

PCRE (Perl-Compatible Regular

Expression) library, which provides all of

Perl’s regular expression facilities, and

which can be used from within programs

written in C. To support this article I have

ported this library and provided a simple

command-line tool called Regex to search

a textfile for a specified pattern. This will

let you try out regular expressions as you

read through this article.

To use this program you will need to

prepare a textfile with a number of lines, at

least some of which should match your

pattern. To try this out, change to the

directory containing Regex and type
*regex -i test

When prompted for the pattern, enter:
DEF *(PROC|FN)\w+

Like the example in StrongEd, this

searches for procedure or function

definitions in Basic, but this time using

Perl’s regular-expression syntax. If you try

this rather contrived example in a task

window you will see something like the

screenshot here.

Throughout this article you will find

other examples to try.You can download

these and the Regex program from the

Archive website.

The basics

To begin with, recall that a regular

expression is just a way of specifying a

pattern that you want to find within some

text. At a basic level most characters,

including all the letters and digits, have the

42 � Archive 23:10 � February–March 2015

FILESFiles:
see p.2
å

Regular expressions

expected meaning. One letter on its own

will find every occurrence of that character

wherever it may appear. A sequence of

letters will find every location where that

string occurs, whether on its own or as

part of another word. In this way, simple

expressions work just like the most basic

search facility in a wordprocessor, or the

INSTR function in BBC Basic.

Metacharacters

To extend the concept, regular expressions

give some symbols a special meaning, and

these are known as “metacharacters”. For

instance, a dot “.” does not match a full-

stop, but rather any single character. In

this way it is analagous to

using the hash # in filing-

system commands.

Similarly, an asterisk

means match any number of

the previous character, so
a*

will match any number of

the letter “a” in a row, and
.*

matches any sequence of

characters. Note that this is

not quite the same as the

usage in filing-system

commands I mentioned

above.

Finally, a backslash “\”

is used as an escape

character to modify the

behaviour of the following

letter or symbol. So if you

need to match a literal full-

stop, use
\.

There are a few other

metacharacters and also

other situations where the

escape character is used.

Read on for examples.

Character classes

If you have tried some simple expressions

then you will be aware of the problem of

constraining the range of possible matches

to include only the ones you actually want.

To return to the earlier example of

matching a single word, there is nothing to

stop the computer finding an occurrence

of the word as part of another. To improve

this we can try to find only those locations

where the desired word is surrounded by

spaces. But this excludes any locations

where the word comes at the end of a

sentence or is followed by a punctuation

mark. To correct this we need to be able to

say something like

“match any one

member of a set of

characters”.

 To solve just this

type of problem, regular

expressions introduce

the idea of character

classes. It’s rather like

the instruction to match

any character, but more

specific. Classes enable

us to do things like find

any single digit. Thus,

for example, \d

matches any digit, but

does not match a letter

or punctuation mark.

 Other commonly

supported character

classes include \s for

any whitespace

character, including

tabs and linefeeds; \w

matches any “word

character” (basically

letters and digits).

 Changing the

lowercase letter to

43 � Archive 23:10 � February–March 2015

Regex on Ro

If you want to use regular

expressions from within your

own programs, two choices are

available on RISC OS:

j The Regex module (sbellon.de/
sw-modules.html) is based on the

Gnu regular expression library,

but it is wrapped up into a

RISC OS module and invoked

using SWI calls. It was first

written by Neil Bird; Stefan

Bellon took up maintenance

from version 1.03. Although it is

a little old now (the latest is

1.06 in 2006) it has the

advantage that it can be used

from within almost any

programming language.

j Alternatively, I have ported

Philip Hazel’s PCRE, the

Perl­Compatible Regular

Expression library (pcre.org).

This is much more recent and

offers more facilities, including

Unicode support, but at present

can only be linked with C

programs. I hope to publish it

with Part 2 of this article.

Archive 23:10 � February–March 2015 � 43

Regular expressions

uppercase gives the complement of a

particular class. So \D then matches

anything which is not a digit; \S and \W

work in a similar way. It is now possible to

write a regular expression to look for a

single word, and reliably exclude those

cases where the word is part of another. So
\Wwalk\W

finds any occurrence of the word walk

surrounded by “non-word” characters,

including spaces and punctuation symbols.

Make up your own classes

This expression is probably good enough

in this example, but if we wanted to be

more specific it is possible to make up new

classes. To do this simply enclose the range

of permitted letters or symbols in square

brackets. Thus, [abc] means any one of

the letters a, b or c.

Likewise, returning to the single-word

example, if we knew that words would be

followed only by a space, full-stop or

comma, then [.,] would be sufficient in

place of the \W expression. Note that the

full-stop does not need to be escaped in

this case, because inside a class it reverts to

its usual meaning.

Another feature is the ability to specify

a range of characters, making it more

straightforward to build quite large classes.

Thus [0-9] means any character between

0 and 9 inclusive – this is a more explicit

equivalent to \d in an expression.

Finally, to define the complement of a

class, add the “^” symbol just inside the

opening bracket: [^0-9] means anything

except the digits 0 to 9.

A practical example: finding hex

With some variations in notation,

character classes are found in almost all

regular-expression systems and, unlike the

simple wildcards allowed in filenames, they

enable us to be quite specific about what

letters are acceptable at a given point. With

this in mind it is now possible to look at a

practical example:

Suppose you wish to find all of the

hexadecimal numbers in the text of a

program. This is a fairly typical use of

regular expressions and is enough to justify

their inclusion in many text-editors aimed

at programmers.

First, to match a single hexadecimal

digit, we can use this character class:
[0-9A-F]

Recall that the asterisk symbol means

“match any number of the previous digit”.

Adding this to the class gives the

expression
[0-9A-F]*

which really means “match a sequence

consisting of any number of the digits 0-9

or A-F”.

This is a good start but it is not

sufficient on its own, because it will quite

happily match FAFF, either on its own or

as part of another word. To make the

expression more specific we need to add

additional text that will serve to delimit a

hex number. In this case, we note that, at

least in the C programming language,

hexadecimal numbers always begin with

“0x”. Adding this to the begining of the

expression gives
0x[0-9A-F]*

which then accepts genuine hex numbers,

but rules out any words consisting solely of

the letters A to F. For most practical

purposes this is a reasonable attempt.

If you wish to try this example, you

can, again, use Regex. This time the

pattern is included in the data file so you

need type only *regex hexnum.

Finding IP addresses

Consider another example, namely that of

matching numeric internet addresses.

These are normally written as four

44 � Archive 23:10 � February–March 2015

Regular expressions

numbers between 0 and 255 separated by

full-stops. We can easily match a single

digit using \d and a dot with \. – so

adding an asterisk after each \d seems a

reasonable guess. This would certainly

match all valid IP addresses, but,

unfortunately, it is not specific enough.

Recall that the asterisk simply means “any

number of”. That includes “none at all”

and “more than three”. Thus a simple

attempt would also find numbers that are

far too long and would even find three dots

in a row!

To improve matters there are often

additional metacharacters that work a bit

like the asterisk but allow us more control.

In Perl regular expressions, we can use a

plus sign “+” to mean “one or more of the

previous character”, and a question-mark

“?” for “either zero or one of the

preceeding symbol”. To put this another

way, the plus works just like the asterisk

but insists that at least one copy be

present; the question-mark makes a

character optional.

To return to the example of IP

addresses, replacing the asterisk with a

plus will, at least, reject the case of three

consecutive dots. However, the problem of

matching numbers that are too long

remains. To eliminate this, there is one

further quantifier, consisting of two

numbers in braces, which will allow us to

be arbitrarily specific. In this particular

case, we can write {1,3} to mean between

one and three, easily matching the valid

numbers in an IP address. So the complete

expression is now:
\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}

Alternates

The above has introduced character classes

and quantifiers. Used together these allow

us to specify some useful patterns for

matching text, as the two examples

demonstrate. This has shown how to

match a specific word, an arbitrary word

using something like
\w+

or any number of a specific letter.

However, suppose we needed to match

any one of a number of words from a list.

Regular expressions also let us specify

alternates, rather like the OR condition in

many programming languages: “either this

or that”. As we have already seen in the

example of PROC or FN names, this is

often written using the vertical-bar

character “|”. Thus the expression
walk|run

matches either of the two human gaits. If

we only want to match one or the other on

its own, and not as part of another word,

then as before, we can add \W to insist that

the match begin and end with a space or

punctuation mark. In this case, however, it

becomes necessary to add brackets round

the alternate words to make it clear that \W

is not part of the alternation, and should

always be present at the begining and end.

Thus, the complete expression
\W(walk|run)\W

should suffice.

Finding domain names

It is now possible to look at another

realistic example: matching internet

domain names. Consider something like

archivemag.co.uk – it has three parts, the

name of the organization, its type (like .co

for company), and the country.

The first section is easy enough to

match: an arbitrary number of word

characters should work. For the second

there are only a limited number of options,

so this is a perfect use of the alternation

facility. The final part, the country code,

presents a bit more of a problem: a very

long list of alternatives is possible, but

would be tedious, and presents problems if

45 � Archive 23:10 � February–March 2015 Archive 23:10 � February–March 2015 � 45

Regular expressions

a new country were created. In this case it

is probably sufficient to accept any two

lowercase letters. So, a complete

expression would look something like:
\w+\.(co|ac|org|gov)\.[a-z]{2}

This isn’t perfect, of course: some

domains, particularly American ones, don’t

have a country code on the end, and still

others omit the type of organization.

An additional exercise for the reader is

to extend this expression to catch the other

possibilities too. As a hint, try using

another alternation with the whole of the

above expression as one of the possibilities.

Mind the brackets

Notice that the ordinary round brackets

fulfil a dual role. As seen above, they can

limit the scope of the alternation, rather

like brackets in a mathematical expression

designate sections that must be evaluated

first. In a similar way, they can be used

with a quantifier to match whole sections

of a pattern that may be repeated, rather

than just single characters or classes.

The other meaning of the brackets has

so far been hidden. This other meaning is

to “capture” which part of the string

matched the expression. In the domain-

names example above, it would tell us

which of the four alternatives would be

found. When this expression matches

against archivemag.co.uk, the brackets

match the “co” section. This enables us to

refer back to parts of the matched string,

which is especially useful when replacing

sections of text, or for performing further

processing in a program.

To illustrate this, try this example

again with the command line
*regex -c Domains

As another example consider
color=#([0-9a-f]+)

which may be used to match the colour

property within an HTML tag. In this case

the round brackets capture the

hexadecimal colour number for further

use, possibly as part of a program that

processes HTML – you could produce a

list of all the colours you use in your

website, for instance. Or you could refer

back to the captured value within the

regular expression itself. I hope to cover

this “back-reference” facility in Part 2.

As a final example, consider the

problem of a section of text that is entirely

optional. If this were only one character,

we can use a class with a quantifier, like
[+-]?

But suppose numbers were instead written

optionally with either of the words plus or

minus. Here brackets will enable us to

combine alternation with a quantifier, as in
(plus|minus)?\d+

Warning

A warning to end with: it is possible to

nest quantifiers. While this is doubtless a

powerful facility, it makes it possible to

specify expressions that can take a very

long time to match.

Summary and next

This article has introduced the concept of

regular expressions, and given a summary

of the most commonly used features,

together with examples. If your main use is

to match patterns in text, then this should

suffice to get you started.

Beyond this, however, a planned sequel

will look at some more advanced features,

as well as questions of efficiency, and using

regular expressions in your own programs.

Nicholas Cutler ncc25@cam.ac.uk

Nicholas recently started bellringing
again when he heard the bells being
rung in his local parish church.
Evidently, there are also many other
campanologists among RISC OS users.

46 � Archive 23:10 � February–March 2015

