
Nicholas Cutler

The first two parts of this series have
concentrated on the processor, looking firstly

at the design of instruction sets, and then at
the internal optimisations to make them run

faster. The remaining component in computer
architecture is the memory system, and in

most cases it is at least as important as the
processor. Very often, improvements in

memory have as much effect on real programs
as the processor alone.

This is an intuitive concept as any practical

computer needs a reliable memory of a decent
size. This is provided by semiconductor

memories, which enabled the micro-computer
revolution of the 1980s. However,

performance improvements in memory have
not kept up with the processor. In an ideal

world, users and programmers alike would
want a large memory in which any word

would be available instantly. This, of course,
cannot be achieved in practice, and it most

certainly wouldn’t come at an affordable
price.

As computer memory can usually only offer

two attributes out of large, fast and cheap, the
reality is a compromise. To offer the best

possible combination, modern computers have
a hierarchy of different memory types: the

processor’s registers hold the variables for the
current calculation; the cache holds recently

used instructions and data; while the slower
main memory can hold the entire program and

data set. A typical memory hierarchy is shown
in the diagram below. Notice that as we move

down a level, the capacity increases, but so
does the access time:

There are two main types of semiconductor

memory: Static and Dynamic RAM. A single
bit of Static RAM is constructed from six

transistors, whereas a bit of Dynamic RAM

comprises a single transistor and capacitor.

The former is faster, occupies more space and
consumes more power while active. For this

reason it is best suited to cache memory.
Alternatively, DRAM is compact and

inexpensive, but it is relatively slow. For these
reasons it is used in the main memory of

nearly all computers. At the bottom of the
hierarchy is the magnetic disc. Although the

slowest form of memory by a significant
margin, it is also the largest and cheapest.

Furthermore, it has the advantage of being non
-volatile and is therefore suitable for long term

storage of data between sessions. There have
been various attempts to fill the gap between

DRAM and magnetic discs, although
improvements in the cost of DRAM and the

speed of hard discs have rendered most of
these obsolete. The closest contender is flash

memory which is increasingly taking over
from hard discs.

As mentioned above, nearly all computers use

DRAM for the main memory, and memories
of a gigabyte or more are increasingly

common. The obvious way of building a large
memory from DRAM is to have individual

cells arranged in a grid with two sets of lines
to select a single bit by row and column for

reading or writing. The layout of a typical
DRAM memory is shown below:

A typical DRAM memory chip might have a

capacity of one gigabit, arranged as four

1 Archive 25:3

ARMs and architecture - Pt. 3

Regs

L1 cache

Level 2 cache

Main memory

Magnetic disc

256 bytes

32 kB

1 MB

1 GB

1 TB

0.5 ns

1 ns

10 ns

100 ns

10 ms

arrays of 256 million cells each. Although this

may be further subdivided internally. Such a
device can be described as 256Mx4, and four

bits can be read or written at once. As the
ARM has a 32 bit wide data bus, eight such

memory chips would be sufficient to provide
1Gb of RAM. Although reads and writes

typically affect a word of 32 bits at a
time, memory addresses are usually in

bytes, because it is sometimes
necessary to use single bytes, for

example when working with text
strings. The address of a full word

must be a multiple of 4 bytes. If only
a single byte is required, the whole

word is transferred and everything
except the desired byte is discarded.

When reading or writing memory, the address

is sent in two parts, firstly to select the row,
and secondly to select the column. The time to

access memory is therefore taken up with the
time to send the row and column address, plus

the data transfer time. The row access time is
about 50ns, but the column access time only

about 2.5ns. This difference means that
DRAM memory often offers a “fast page

mode”, which allows two memory accesses in
the same row to happen more quickly. The

load and store multiple words instructions on
the ARM are designed to exploit this and

allow several consecutive words to be

transferred without the cost of a full memory
access for each. It is also possible to exploit

this property when transferring a block from
main memory into the cache.

Another technique to speed up memory access

is to increase the ammount of data that can be
transferred on a single access. Instead of

arranging memory into a single bank of 32-bit
words, it is possible to have several banks in

parallel. On each memory access, every bank
will transfer a word each. With a total of four

banks, a quadruple word or 128 bits can be
transferred at any one time. The memory

bandwidth has increased fourfold, even
though the speed of the physical RAM has

remained the same. An example with the
memory arranged into 4 banks of 32 bit words

is shown below, demonstrating how such a
memory can be addressed as bytes, words, or

whole quadwords:

Of course, this is not always beneficial,

especially given that each 32-bit instruction
word will take just as long to read as a full

quadruple word. However, when combined
with the cache, whole blocks of data can be

transferred more quickly, while the processor
continues to read data one word at a time as

required. Additionally, some processors are
able to work with 64-bit data including

version eight of the ARM architecture which
has a 64-bit mode (AArch64). Furthermore

various extensions allow a processor to take
advantage of wide data paths by executing a

single instruction on several short data items
at once, such as ARM’s Neon, or Intel’s

2 Archive 25:3

Column drivers

R
o
w

 d
ri
ve

rs

Latches

Data out

A
d
d
re

ss
 b

u
ff
e
r

4 5 6 7

0
16

16n

4
20

16n+4

8
24

16n+8

12
28

16n+12

0

16

16n

Quadword
address

Byte address

Word address

lsb msb

lsw msw

MMX and SSE. In the case of Neon, a single
quadruple word register can be considered as

four 32-bit words, eight 16-bit half words or
16 bytes. An instruction such as an addition

can be carried out on each of the items in
parallel.

While such techniques for increasing memory

bandwidth are helpful, they do not remove the
need for a cache to act as a buffer between the

processor and memory. Indeed they often
complement the cache by allowing data to be

fetched efficiently in blocks, even though the
processor only needs one word at a time. The

previous part of this series has already
introduced the concept, but this part will now

go on to examine the details:

Recall that the purpose of the cache is to
provide fast access to recently used data and

instructions. Also remember that the ARM 3
had just 4kb of cache memory, while even

now the upper limit is about 64 kb. Clearly
this will only store the most trivial of

programs, so frequent replacement of the
contents will be necessary. The work of

transferring data between memory and the
cache happens automatically and is invisible

to even the programmer. However, some
knowledge of the characteristics of the

memory system makes it possible to optimise
programs.

Of course, transferring and replacing data at

the level of individual words is too
complicated, while it also fails to take

advantage of the fast page mode offered by
DRAM. For this reason most caches deal in

blocks, where a typical size is 16 words, or 64
bytes. When the processor requests a specific

word, the entire block containing the
requested word is fetched (the block address is

just the byte or word address with the bottom
six bits set to zero). In most cases this is a

sensible approach to take as memory accesses,
especially for instructions, are often

sequential. Although early processors
sometimes shared the cache between

instructions and data, it is now more usual to
have separate caches for each, to take

advantage of the more predictable nature of
instruction fetches.

Having determined that a block must be

fetched from memory, the next question is
where it should go within the cache. It is

entirely possible that the hardware could look
up in a table to determine, say, the oldest

block in the cache and replace it with the
incoming data. Such a cache is said to be fully

associative, and this is the most flexible
approach. However, to simplify the cache

control, there are often some limits on where
the block can be placed. At the other end of

the scale is a direct mapped cache where there
is only one possible location for the block,

determined entirely by its address. Somewhere
in between are set associative caches which

split the total space up into a number of sets.
Each incoming block of data can only be put

into a specific location, but within any set.
This offers some flexibility while also

reducing the amount of hardware necessary to
support the cache. Increasing the associativity

will increase the chance that the requested
data is in the cache. In practice a change to

full associativity has a similar impact to
doubling the overall size with 2-way

associativity. The placement of 64 byte blocks
in a small 4 kb cache is shown below. The

requested word is &180C8, in block &603
(found by dividing the address the block size.)

In a direct mapped cache, this has a unique
position which is the remainder when dividing

the block number, &603, by 64 (the number of
lines in the cache). So in this case the block

must go in line 3. For a set associative cache
the calculation is similar, although there are

fewer lines in each set:

For anything except a direct mapped cache,
there is a choice of which block gets discarded

3 Archive 25:3

to make way for the new one. One plausible

strategy is to replace the oldest one, although
it fails to take account of blocks which are in

frequent use throughout the execution of the
program (perhaps global variables or common

subroutines). Another possibility is to discard
the block which has been used least recently.

While this takes account of usage patterns, it
is possible to think of situations where this too

fails. In practice, however, this is often the
best strategy. The simplest option, replacing

blocks randomly, is the worst but the
differences in performance on real tasks are

surprisingly small.

Having looked at some of the theory, it is
useful to consider some real examples. The

table below summarises the caches on three
ARM processors. In particular look at the miss

rate which shows the proportion of loads
which are not in the cache. Although these

figures are estimates based on typical
programs and should be taken with some

caution, they show that even relatively small
caches have a beneficial effect on

performance:

However, one surprise from these figures is
the low degree of associativity on the newest

processor. This is partly because the Cortex
series adds a second level cache, reducing the

impact of a miss. Without this, the ARM 3 and
the StrongARM had to interface directly with

relatively slow main memory. The high
associativity was designed to gain the

maximum benefit from the cache.

Where present, such as on the Cortex series,
and other processors designed for higher

performance, the second level of cache works
in a very similar way to the first level.

Although slower, it compensates for this with
a much greater capacity, up to 1 Mb, and a

higher degree of associativity, again because
the penalty for a miss is correspondingly

greater. The size of a single block may be
larger, but the Cortex-A53 keeps the 64 byte

blocks as this is the most efficient option for
all but the largest caches. While larger blocks

improve miss rates up to a point, very large
blocks simply do not offer enough fine control

over the cache content.

So far this explanation of caches has only
considered loads: instructions which transfer

data from the memory to the processor. The
situation with store instructions is slightly

more complex because of the need to ensure
that two copies of the data (in the cache and

main memory) are kept up to date. One simple
way of doing this is to write to the cache, and

then to write the same data to main memory,
ensuring that both copies remain consistent.

This is known as a ‘write through cache’. The
disadvantage is that the processor has to wait

for the data to be saved to main memory
before proceeding. If there are many store

instructions in sequence then there is little
benefit to be gained from the data cache. The

4 Archive 25:3

Set 1 Set 2 Set 3 Set 4

Direct mapped

Fully associative

Block &603 is placed in slot 3

Block &603 can go in slot 3 of any set

The block can be placed anywhere

ARM 3

StrongARM

Cortex-A53

4 kb unified/64 way

16 kb/16 way 16 kb/16 way

32 kb/2 way 32 kb/4 way

10% overall

0.4% 4.1%

0.14% 3.8%

Processor Inst. cache Data cache
Miss rate

Inst. Data

other main technique is to add a buffer to hold
data until it can be stored in main memory.

This works well in the usual case with
relatively few stores, allowing the processor to

fetch instructions from the cache, while the
data is written to memory. This also highlights

another advantage of keeping a separate
instruction cache: storing data to this space

becomes impossible, precluding the use of self
-modifying code.

The final component of the memory system is

the concept of addressing, providing a way of
requesting a specific location, and keeping

track of data present in the cache. In the
earliest computers there was a direct

correspondence between the address and a
single memory location. However, as

memories grew it became necessary to map
between the virtual address used by the

processor and the physical location in
memory. In the BBC micro, for example, it

was often necessary to switch between banks
of sideways ROM when changing language or

filing system. Each was mapped to the same
location in the virtual address space, providing

a consistent view of memory to the
programmer. Even though there could be

several such banks in the machine, only one
was active at once. The first Archimedes

machines had the opposite problem: a larger
address space than the available memory.

Here portions of the available RAM could be
mapped to different places in the address

space, allowing important areas like the video
memory or the current task to appear at a

consistent location regardless of how much
memory might be installed, with large parts of

the virtual address space remaining unused.

To map between the virtual and physical
address, the memory is split up into a number

of pages. The high order bits of the address
usually specify a page number, and the low

order bits an offset within the page. The page
number is used as an index to read the

physical address from a table. The final
address is given by the base of the physical

page plus the offset. On recent RISC OS
machines, pages of 16 kb are common, so the

page number is given by the top 18 bits of the
virtual address, and the offset by the bottom

14 bits.

One advantage of this table driven scheme is
that switching between tasks is relatively easy:

only the page table needs to be updated, rather
than moving large chunks of data around the

memory. The disadvantage is that the page
table can get quite large (218 entries for a

machine with a 32 bit address space in 16 kb
pages). Although the address translation is

hidden from the application programmer, and
performed in hardware by the memory

controller, there is still a penalty. To speed
this up, recently used page table entries, such

as those for the current task, are often cached
by the memory controller. This area, known as

the ‘translation lookaside buffer’ works much
like the processor’s cache.

To further reduce the size of the page tables, a

hybrid scheme which is able to handle large
pages of a megabyte or more, alongside the

more usual small pages, is sometimes used. In
such a scheme the high order portion of the

address refers to an entry in the page table as
before. However, this might be either the

address of a large page, or a pointer to a
further table of small pages. Such a scheme is

supported by the newer ARM processors,
although RISC OS has not made use of it

hitherto. The operation of address translation
with large pages of 1 Mb and small pages of

16 kb is summarised below:

The real advantage of a large virtual address
space, is the ability to present a consistent

view to the programmer, while data can reside
anywhere in the physical memory. Such a

scheme allows the most frequently used
blocks to be mapped into the cache and

5 Archive 25:3

referenced by virtual address. One further
advantage of the page based mapping scheme

is that it can provide a degree of protection by
preventing unauthorised access to parts of the

memory. This might include: preventing one
task from writing to another’s space; ensuring

pages containing programs are read only; and
ensuring that the user programs cannot access

pages used by the operating system. While
RISC OS has not made much use of memory

protection it remains important for multi-user
operating systems.

In summary this article has concluded the

series on computer architecture by looking at
the memory system. The predominent type of

memory is DRAM which is both compact and
inexpensive, but relatively slow. Thus, a

combination of memories is necessary to offer
a good compromise between speed and

capacity. At least one level of cache acts as a

buffer between the processor and main
memory, while the idea of a virtual address

space brings the entire memory hierarchy
together. Address translation allows the

memory to be split up into pages and mapped
into the available RAM, and simplifies the

process of switching between tasks.

When the internal design of the processor is
considered too, a lot of complexities have

been hidden. Even so, understanding
computers at this level makes it possible to

optimise programs. In future, an appreciation
of these details will be essential to make the

most of newer architectures.

ncc25@srcf.net

It is said that the first instruction set architecture
that you learn should be an exemplar, like first
love. Nicholas thinks this was once true of the
ARM, but less so after recent extensions.

6 Archive 25:3

First level
index

Section base address
plus offset

Or pointer to fine
page table

Second level
index

+

+

Page base address
plus offset

Final physical
address

12 bits 14 bits6 bits

Coarse page table

